My Open Source Projects

Here’s a list (which I’ll try to keep updated) of my publicly available open source projects.

Postal.NET: Postal.NET is a .NET Standard library for writing decoupled applications.

Interpose.Core: Interpose.Core is a framework for doing dynamic interception of .NET code (Aspect-Oriented Programming).

FluentValidationJS: A fluent validation library for JavaScript.

StepsJS: A JavaScript framework for Selenium WebDriver automation.

This reminded me that I haven’t talked publicly about StepsJS, so I intend to do that very soon. Stay tuned!

Succinctly Books Index

This page lists all the books I wrote or reviewed for Syncfusion’s Succinctly series.

Books I wrote:

Books I reviewed:

Stackify Posts Index

As some of you may remember, last year I started writing occasionally a few posts for Stackify (@Stackify). In this page I will try to keep this list updated.

Stay tuned for more!

Interpose.Core Changes

I’m writing this from the 2018 MVP Global Summit!

Got my first pull request for Interpose.Core: it came from @x2764tech and it was suggested that Interpose should target .NET Standard. For some reason, I had come to the impression that it wasn’t possible – I *had* tried – but now it seems otherwise. Also, I got a heads up that the unit tests were failing for attribute-based interception, and I now fixed it.

Interpose.Core is now at version 1.4.0. Some of the changes were:

  • BUG: fixed interception with attributes where the interception attribute was being applied at the method level, not class
  • IMPROVEMENT: targeting .NET Standard instead of .NET Core
  • IMPROVEMENT: added caching of handler instances
  • IMPROVEMENT: added support for providing a service provider
  • IMPROVEMENT: small fixes here and there

Huge thanks to x2764tech for the contribution! Winking smile

Interpose.Core Updates

Some of you may have read my previous post on Interpose.Core. I’ve made a few modifications since:

  • Added caching for type generators, meaning, you won’t have to generate the same types twice
  • Added DispatchProxy interception; if you don’t know DispatchProxy, it’s .NET Core’s replacement for RealProxy, the transparent proxy mechanism that exists in .NET “full” framework. It may be used as an alternative to interface interception, as we don’t need to generate a type at runtime

The source code is updated and so is the NuGet package. Do have a look and share your thoughts! Winking smile

Introducing Interpose.Core

Update: see this post and this one.

I’m writing this from the 2018 MVP Global Summit!

Some of you may remember a series of posts I wrote about AOP and code interception in .NET. In them I built an AOP framework from scratch that could do custom interception. A few years passed by and I decided to revisit it and turn it into a .NET Core project: I introduce to you Interpose.Core.

Interpose: place or insert between one thing and another.

Interpose is available as an open source project (under Lesser GNU Public License) which you can get from GitHub or NuGet. It can do type and instance interception:

  • Type: virtual methods, the type to intercept cannot be sealed
  • Instance: interface and dynamic interception

Interpose uses Roslyn to generate the proxy types. As it targets .NET Core, you can use it on any supported platform.

At its core, you have an interceptor class (IInstanceInterceptor or ITypeInterceptor) and you ask for an instance or a type to be intercepted using a given handler (instance or type). It then generates a proxy instance (or type, which you must instantiate yourself). When using the generated proxy instance, for the target methods or properties, it will execute the provided handler.

So, what’s an handler like? An handler is just any implementation of the IInterceptionHandler method, that offers a single method, Invoke. This method takes a parameter that describes all of the execution context (target object, target method, parameters). From it, you can run the base implementation before or after performing any actions, or you can skip it altogether, in which case, you must provide a return value yourself.

Two instance interception examples, one for each interceptor, first, interface:

var interceptor = new InterfaceInterceptor();
var instance = new MyType();
var handler = new MyHandler();
var proxy = interceptor.Intercept(instance, typeof(IMyType), handler) as IMyType;

As you can see, you need to explicitly state which interface in the target instance you wish to intercept.

For dynamic, you can do something similar:

var interceptor = new DynamicInterceptor(); var instance = new MyType(); var handler = new MyHandler(); dynamic proxy = interceptor.Intercept(instance, null, handler);

Here you don’t need to specify an interface, but you do need to declare your proxy instance as dynamic.

Types are easy to intercept too, the major difference is that you pass types, not instances:

var interceptor = new VirtualMethodInterceptor();

var proxyType = interceptor.Intercept(typeof(MyType), typeof(MyHandler));

var proxy = Activator.CreateInstance(proxyType) as MyType;

Here the handler must be a public non-abstract class with a public parameterless constructor.

A very simple handler could be:

class MyHandler : IInterceptionHandler


public void Invoke(InterceptionArgs args)


if (args.Method.ReturnType == typeof(int))


//always return 100

args.Result = 100;




Console.Out.WriteLine(“Before base method call”);


Console.Out.WriteLine(“After base method call”);




There are a couple of extensions that allow you to use a registry for mapping methods to intercept to handlers or handlers defined as attributes.

You can integrate it with .NET Core’s dependency injection framework:




Still some features missing, such as caching of generated proxy types, interception of generic types or the ability to maintain custom attributes from the base types or interfaces. Will try to address these when I have the time. Also, might be useful to have a small library of common handlers (logging, exception handling, measuring time, etc), if this ever comes to live, I will do it in a different assembly.

In the meantime, enjoy it and let me know what you think!

ASP.NET Core Pitfalls – Session Storage

Previous versions of ASP.NET featured several ways to persist sessions:

  • InProc: sessions would be stored on the server’s process memory
  • SQL Server: sessions would be serialized and stored in a SQL Server database; other vendors offered similar functionality
  • State Server: sessions would be serialized and stored on an instance of the ASP.NET State Service
  • Custom: we had to implement our own persistence mechanism

InProc was probably the most commonly used; it was the fastest, as the items in the session weren’t serialized, but on the other side they would not survive server crashes. Using this approach things usually worked well, because the session object merely provided a reference to the items stored in memory, so manipulating these items didn’t mandate that the session be explicitly saved.

In ASP.NET Core, all of this is gone. By default, sessions are still stored in memory but one can also use one of the available distributed cache mechanisms. The main difference, however, is that even when the session objects are stored in memory, they still need to be serialized and deserialized prior to persisting or retrieving them. It is no longer possible to just store a pointer to a memory object and keep manipulating it transparently; the object to be stored needs to be converted into a byte array first. You can use any serializer you want.

If we think about it seriously, it was probably a good decision: I’ve seen applications where a lot of data was being stored on the session using InProc mode, but then there was a need to switch to another mode to improve scalability, and the application would just stop working, as the objects being stored weren’t serializable. This time, we need to carefully think about it beforehand.

ASP.NET Core Pitfalls – Redirect to Action Keeps Route Parameters

When you redirect after a POST – following the famous Post-Redirect-Get pattern – but your previous view was constructed using a route parameter, then it will be sent to the redirect action as well.

For example, say you are responding to a request for /Filter/Smartphone, where Smartphone is a route parameter, you POST it to some controller action and at the end you redirect to the Index action using the RedirectToAction method:

return this.RedirectToAction(nameof(Index));

The browser will issue the GET request for Index but keeps the Smartphone route parameter, which is not good.

The solution is to pass a routeValues parameter to RedirectToAction that doesn’t contain any of the possible route parameters. One way to do it would be to create a dictionay with all action parameters nullified:

return this.RedirectToAction(nameof(Index), MethodBase.GetCurrentMethod().GetParameters().ToDictionary(x => x.Name, x => (object) null));

The solution to have this done automatically lies in the MethodBase.GetCurrentMethod() method. This way, you are sure to avoid any unwanted route parameters on your next request.

In case you are wondering, passing null, a dictionary without entries or object won’t work, the only other way is to pass an anonymous value with the parameters explicitly set to null.

Entity Framework Core Succinctly Released

My latest (and fifth) ebook for Syncfusion’s Succinctly collection is out: Entity Framework Core Succinctly! It covers Entity Framework Core 2.0 and you can download it for free – need to register first, though.

This book is inspired by my previous one on Entity Framework Code First, but quite a lot has changed.

Huge thanks to Jeff Boenig for the technical review and to Hillary Bowling, Tres Watkins and Jacqueline Bieringer of Syncfusion for all their support.