ASP.NET Core Inversion of Control and Dependency Injection

Introduction

There are quite a few good posts out there on Inversion of Control (IoC) and Dependency Injection (DI) in the ASP.NET Core world, but I felt there was still something to be said, hence this post! Mind you, this is going to be a long one! I once wrote another post on the history of dependency resolution in .NET, you may want to have a look at it. Always keep in mind that this is based on the latest bits, and may still change when it gets to the final version.

Services Registration

At bootstrap, ASP.NET Core will either call the ConfigureServices method, or one with a name following the convention Configure<environment>Services, where <environment> comes from the Hosting:Environment environment variable, and you can also set it in Visual Studio:

image

It is commonly set to “Development”, “Production”, “Staging”, etc. Keep in mind that if the environment-specific method exists (e.g., ConfigureDevelopmentServices), then the generic one (ConfigureServices) is not called.

The Configure*Services method is passed an instance of IServiceCollection, which is where we get to store our service registrations, so that they can be used by ASP.NET Core further along the pipeline. A service registration needs three things:

  • A key type, normally an interface or an abstract base class;
  • A concrete implementation of the key type;
  • A lifetime.

The lifetime determines how many times the concrete implementation is going to be built. The ASP.NET Core service provider implementation knows about three different lifetimes:

  • Scoped: an instance is created the first time it is requested during the same HTTP request, and during that request, this same instance is always returned;
  • Singleton: an instance is created the first time it is requested, and this same instance is always returned in all subsequent calls;
  • Transient: a new instance is always created, whenever it is requested.

A registration is an instance of the ServiceDescriptor class that is added to the IServiceCollection instance:

services.Add(new ServiceDescriptor(typeof(IMyService), typeof(MyService), ServiceLifetime.Singleton));

There are several extension methods that make this registration even easier.

What if you want to have custom processing when a service is returned? Simple:

services.AddTransient<IMyService>(sp =>

{

    var something = sp.GetService(typeof(ISomething)) as ISomething;

    var other = new OtherService();

    //do something with it

    return new MyService(other);

});

Keep in mind that the concrete service must either implement or inherit from the key service. Also, for the Scoped lifetime, if the concrete class implements IDisposable, the service provider will honor it and call Dispose at the end of the HTTP request.

After Configure*Services, ASP.NET Core calls Configure, also in the Startup class. This is where the core initialization occurs, like, adding all middleware, such as the MVC one, that makes the application works the way we expect it. The Configure method can either have no parameters or it can receive one or more parameters with types that match the registered services. For example, we will always have IApplicationBuilder, IHostingEnvironment, ILoggerFactory, so we can add them as parameters together with our own:

public void Configure(

    IApplicationBuilder app,

    IHostingEnvironment env,

    ILoggerFactory loggerFactory,

    IMyService service)

{

    //do something with the services

}

It gives us a good chance to initialize them before the actual fun begins. If we want, we can also pass it just an instance of the dependency resolution service, represented by the IServiceProvider interface, which has been around since the early days of .NET. The ASP.NET Core service provider implements this interface, so having it here just means: “get me the service provider implementation so that I can retrieve services from it”:

public void Configure(IServiceProvider serviceProvider)

{

    var env = serviceProvider.GetService(typeof(IHostingEnvironment)) as IHostingEnvironment;

    var service = serviceProvider.GetService(typeof(IMyService)) as IMyService;

}

In the latest version of ASP.NET Core, there is no globally accessible reference to the built-in service provider, something known as the service locator, of bad reputation. If, for any reason you feel you need it, here is the place to store it. By the way, the Microsoft.Extensions.DependencyInjection package has some good strongly typed extension methods for IServiceProvider, make sure you include it.

Services

Each concrete service class itself can be dependency-injected: by default, it should be a concrete class and have a public parameter-less constructor; if, however, we want to inject dependencies into it, which also need to be registered in the service provider, we can have a constructor that takes these dependencies:

public class MyService : IMyService

{

    public MyService(IServiceProvider serviceProvider)

    {

        //get something from the service provider

    }

}

Notice the usage of IServiceProvider again. Another option is to have the constructor contain more concrete dependencies:

public class MyService : IMyService

{

    public MyService(ILoggerFactory loggerFactory)

    {

        //do something with the logger factory

    }

}

You can pass any number of parameters, of any type that is registered in the service provider, normally in one of the Configure*Services methods. If the specified service type is not registered, you get an exception at runtime.

Controllers

An MVC controller can have dependencies injected through its constructor, like I’ve shown for services:

public class HomeController : Controller

{

    public HomeController(IMyService service)

    {

        //do something with the service

    }

}

The same pattern applies: we can either declare a parameter as IServiceProvider or as a more specific type. It doesn’t matter if our controller inherits from Controller or is a POCO controller.

There was another dependency injection possibility with MVC controllers, which consisted in decorating public properties with a [FromServices] attribute: if a registration exists that matched the property’s type, it would be injected into the property just after the controller is constructed:

public class HomeController

{

    [FromServices]

    public IService Service { get; set; }

}

This is no longer possible, and the functionality was removed in DNX RC2, although it will still work in RC1. Forget about it.

By default, controller classes themselves do not come from the dependency resolution mechanism. You can achieve that, if, in Configure*Services, you call AddControllersAsServices, passing it either a Type or an Assembly collection:

services

    .AddMvc()

    .AddControllersAsServices(new[] { typeof(HomeController).GetTypeInfo().Assembly });

This allows you to do this:

services.AddSingleton<HomeController, SingletonHomeController>();

Each time MVC tries to build an HomeController, it will instead get the same SingletonHomeController. Note that I am not saying that you should do this, but I think you get the idea!

Filters

Filters in MVC allow you to intercept action method calls, results and exceptions, and do stuff before, after of instead of the real actions. You have global filters and attribute filters: global filters apply always, and attribute filters only apply in the scope where they are declared – a controller’s class or an action method. Filters themselves can have dependencies injected into them.

In order to declare global filters, you use one of the overloads of the AddMvc method, normally in the Configure*Services method, and registering the filter as a service:

services.AddMvc(mvc => mvc.Filters.AddService(typeof(GlobalFilter)));

MVC will try to resolve the filter type, if necessary, injecting it any dependencies, in the usual way:

public class GlobalFilter : IActionFilter

{

    public GlobalFilter(IMyService service)

    {

        //do something with the service

    }

 

    public void OnActionExecuted(ActionExecutedContext context)

    {            

    }

 

    public void OnActionExecuting(ActionExecutingContext context)

    {

    }

}

The other option for filters is attributes, but attributes require a public parameter-less constructor. The MVC team came up with an alternative for that, in the form of the ServiceFilterAttribute and TypeFilterAttribute attributes. Both receive a Type and the difference is that the first will try to resolve that type from the services registration and the last one will just instantiate it. Let’s see an example:

[ServiceFilter(typeof(GlobalFilter))]

public class HomeController : Controller

{

    [TypeFilter(typeof(SomeFilter))]

    public IActionResult Index()

    {

        //...

    }

}

So, GlobalFilter is retrieved from the services registration, and, if it is a filter, it will behave accordingly to the context where it is located, in this case, it is the whole controller. SomeFilter, on the other hand, is just instantiated and used, no need to have it registered. Don’t forget that types passed to ServiceFilterAttribute and TypeFilterAttribute have to implement one of the filter interfaces in namespace Microsoft.AspNet.Mvc.Filters otherwise an exception is thrown.

Models

Model classes are declared as parameters to action methods in an MVC controller. There’s a binding mechanism that fills their properties automatically, but we can also use dependency injection here.

First, the whole model can come from dependency injection:

public IActionResult Index([FromServices] IMyService service)

{

    //...

}

Or, at least, some properties of the model:

public IActionResult Update(Model model)

{

    //...

}

 

public class Model

{

    [FromServices]

    public IMyService Service { get; set; }

 

    //...

}

Views

MVC views can also take injected services, through the @inject directive:

@inject IMyService service;

 

<p>@service.Serve()</p>

View Components

View components, introduced in ASP.NET MVC Core, can also be injected in pretty much the same way as controllers:

public class MyServiceViewComponent : ViewComponent

{

    public MyServiceViewComponent(IMyService service)

    {

        //do something with the service

    }

    

    public string Invoke()

    {

        //...

    }

}

Tag Helpers

Tag helpers, like view components and controllers, also support constructor injection:

[HtmlTargetElement("service")]

public class ServiceTagHelper : TagHelper

{

    public ServiceTagHelper(IMyService service)

    {

        //do something with the service

    }

 

    public override void Process(TagHelperContext context, TagHelperOutput output)

    {

        //...

    }

}

Middleware

OWIN-style middleware are likewise injectable through the constructor:

public class ServiceMiddleware

{

    private readonly RequestDelegate _next;

    

    public ServiceMiddleware(RequestDelegate next, IMyService service)

    {

        this._next = next;

        //do something with the service

    }

    

    public Task Invoke(HttpContext httpContext)

    {

        //...

    }

}

Using a Custom IoC/DI Container

Now, you may not want to use the built-in service provider and use your own (Unity, Autofac, Ninject, TinyIoC, etc). That is certainly possible!

You need to change the signature of the Configure*Services method so as to return an IServiceProvider:

public IServiceProvider ConfigureServices(IServiceCollection services)

{

    services.AddMvc();

 

    services.AddTransient<IMyService, MyService>();

 

    return new MyIoCContainer(services.BuildServiceProvider());

}

The key here is to create an instance of the service provider we want to use, maybe leveraging on the one produced from the service collection (BuildServiceProvider method), and return it here. Of course, if it has more features and lifetimes than the default one, you are free to use them all. The only contract it has to comply to is that of IServiceProvider.

Dependency Resolution

While running your MVC application, you can explicitly ask for services registered in the global (the default or your own) service provider. The HttpContext class exposes a RequestServices property; here you will find the custom service provider that you returned in Configure*Services, or ASP.NET Core’s built-in one. Whenever you have a reference to the current HttpContext (controllers, view components, tag helpers, views, middleware, filters), you get it as well. The “old” ApplicationServices was removed in recent commits, so it won’t make it to the final version of ASP.NET Core and you shouldn’t be using it.

Conclusion

The dependency injection mechanism was substantially changed in ASP.NET Core. The only identical feature seems to be constructor injection, and it is understandable, since it’s what most people should be using anyway. Now every moving part of ASP.NET Core is injectable through the same mechanism, which I think is a good thing. The problems so far have been the relative instability in the ASP.NET Core, things have been changing a lot, and there is still no light at the end of the tunnel.

ASP.NET 5 Node Services

At the MVP Global Summit, Steven Sanderson (@stevensanderson) presented a Microsoft project he was working on: Node Services. In a nutshell, this is an integration of ASP.NET 5 and Node.js, it makes it possible to call a Node.js function from ASP.NET. One of its possible usages is to use Node.js to compile AngularJS directives or ReactJS JSX files, and for that reason, there are two modules built on top of Node Services just for that purpose (code available at GitHub and NuGet, here and here).

Disclaimer: this is still in early stage, and is likely to change!

So, after you install the NuGet package using the now familiar syntax:

image

You need to register the Node Services it in Startup.cs’s ConfigureServices method:

var app = services.Single(x => x.ServiceType == typeof (IApplicationEnvironment)).ImplementationInstance as IApplicationEnvironment;

 

services.AddSingleton<INodeServices>(new Func<IServiceProvider, INodeServices>(sp => Configuration.CreateNodeServices(NodeHostingModel.Http, app.ApplicationBasePath)));

Now, there are two ways by which ASP.NET can communicate with the Node.js host:

  • HTTP (NodeHostingModel.Http): a local service is started which waits for JSON requests and routes them to Node.js;
  • Interprocess communication (NodeHostingModel.InputOutputStream): a direct stream with the Node.js hosting process; much faster than the HTTP version, but also less reliable.

Creating a Node.js module is easy; let’s add a .JS file to the project:

module.exports = function (cb, a, b)

{

    a = parseInt(a);

    b = parseInt(b);

 

    return cb(null, (a + b).toString());

};

For simplicity’s sake, we are doing a very simple operation: just adding two numbers, but in a real-life scenario you can require any other Node.js modules and do any arbitrarily complex operations. You need to be aware of a couple of things:

  • The first parameter to the exported function must be a callback function; this will be used for returning the result;
  • Each parameter must either be a string or a JSON object;
  • The result – second parameter to the callback function – also needs to be a string or JSON.

And how do you call this? You just need a reference to the registered instance of INodeService, and on it you call a module asynchronously, passing it some parameters:

var node = this.Resolver.GetService(typeof(INodeServices)) as INodeServices;

var result = await node.Invoke<string>("sum.js", "1", "2");    //"3"

You can also specify the module and function name explicitly, if you export it from the .JS file (not in this example):

var result = await node.InvokeExport<string>("sum.js", "sum", "1", "2");

Happy Noding! Winking smile

ASP.NET 5 View Components

One of my favorite features in ASP.NET 5 / MVC 6 is View Components. Like I said of Tag Helpers, I think they are what MVC was missing in terms of reusable components.

View Components are similar to partial views, except that they don’t have a visual design surface; all of its contents must be produced by .NET code. Only “tangible” content can be returned, no redirects, or any other contents that require HTTP status codes.

A View Component needs to either inherit from ViewComponent (no API documentation yet) or be a POCO class decorated with the ViewComponentAttribute. If it inherits from ViewComponent, it gets a lot of useful infrastructure methods, otherwise, it is possible to inject some context, such as a ViewContext reference.

A View Component looks like this:

public class SumViewComponent : ViewComponent

{

    public IViewComponentResult Invoke(int a, int b)

    {

        return this.Content($"<span class=\"result\">{a + b}</span>");

    }

}

As you can see, a View Component can take parameters, any number, for that matter, and, by convention, its entry point must be called Invoke, return an instance of IViewComponentResult, and here is where its parameters are declared.

A View Component is rendered like this:

@Component.Invoke("Sum", 1, 2);    <!-- <span class="result">3</span> –>

As you can see, the argument to Invoke must be the View Component’s class name, without the ViewComponent suffix. We can override this and set our own name, by applying the ViewComponentAttribute:

[ViewComponent(Name = "Sum")]

public class ArithmeticOperation

{

    public IViewComponentResult Invoke(int a, int b)

    {

        return new ContentViewComponentResult($"<span class=\"result\">{a + b}</span>");

    }

}

Notice that this uses a POCO class that does not inherit from ViewComponent. However, the Razor syntax will be exactly the same, because of the Name passed in the ViewComponentAttribute attribute. It basically only needs to be public, concrete and non-generic.

It is also possible to use an asynchronous version:

[ViewComponent(Name = "Sum")]

public class ArithmeticOperation

{

    public async Task<IViewComponentResult> InvokeAsync(int a, int b)

    {

        return new ContentViewComponentResult($"<span class=\"result\">{a + b}</span>");

    }

}

In this case, the Razor syntax must be instead:

@await Component.InvokeAsync("Sum", 1, 2);    <!-- <span class="result">3</span> –>

Because the ViewComponent class exposes some properties that give access to the execution context, namely, ViewContext, it is also possible to have it in the POCO version, by decorating a ViewContext property with ViewContextAttribute:

[ViewContext]

public ViewComponentContext ViewContext { get; set; }

The ViewComponentContext class gives direct access to the arguments, the ViewData and ViewBag collections, the FormContext and a couple of other useful context properties, so it is generally good to have it near by. It is even possible to access the view’s model:

var v = this.ViewContext.View as RazorView;

dynamic page = v.RazorPage;

var model = page.Model;

View Components can benefit of dependency injection. Just add the types that you wish to inject to the constructor, works with both the POCO and the ViewComponent version:

public class SumViewComponent : ViewComponent

{

    public SumViewComponent(ILoggerFactory loggerFactory)

    {

        //do something with loggerFactory

    }

}

One last remark: view components are automatically loaded from the executing assembly, but it is possible to load them from other assemblies, we just need to get an handle to the web application’s IViewComponentDescriptorCollectionProvider. From it, we can get to the ViewComponents collection and add our own:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)

{

    var vcdcp = app.ApplicationServices.GetService<IViewComponentDescriptorCollectionProvider>();

    var list = vcdcp.ViewComponents.Items as IList<ViewComponentDescriptor>;

 

    var viewComponentType = typeof(MyViewComponent);

 

    var attr = viewComponentType.GetTypeInfo().GetCustomAttributes<ViewComponentAttribute>(true).SingleOrDefault();

    var fullName = attr?.Name ?? viewComponentType.DisplayName(true);

 

    list.Add(new ViewComponentDescriptor

    {

        FullName = fullName,

        ShortName = viewComponentType.DisplayName(false),

        Type = viewComponentType

    });

 

    //rest goes here

}

This makes it very easy to register View Components that are declared in different assemblies.

Have fun! Winking smile